If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j^2=15
We move all terms to the left:
j^2-(15)=0
a = 1; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·1·(-15)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*1}=\frac{0-2\sqrt{15}}{2} =-\frac{2\sqrt{15}}{2} =-\sqrt{15} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*1}=\frac{0+2\sqrt{15}}{2} =\frac{2\sqrt{15}}{2} =\sqrt{15} $
| 43 (2x+21 )=2 | | 4x+2(-5.5)=-8 | | (x+4)^2-x^2=704 | | –7j(j+8)=0 | | 50p-5p=9 | | 5×(2p-3)=30 | | x+161/2=64 | | 8.42=5.42-3g | | 5n+nn=5 | | 21=6n-3 | | X-25=33;x=58 | | 21=6n+3 | | 12x-25=×-3 | | 21=6n+ | | −6 | | 3x=5x+23 | | −6 | | (2x+3)2-9x=19 | | 4+19x=100 | | x/8.2=10 | | -119=-18n+25 | | -119=-18n=25 | | 4x+3=x−6 | | =3.14*r2r=12 | | -2/5=x/35 | | 3x+26+7x-16=360 | | (2x-9)^(3)=-129 | | x/3-4=-24 | | 7+14n=-105 | | 49=7r;r=3,6,7,9 | | 360=3x+26+7x-16 | | 19x-1+17x+1=360 |